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ABSTRACT 

The comparative study of simplified versions of the equations governing barotropic flow in 1) the f-plane, 2) the  
8-plane, 3) thc sphcrical surface, leads t o  a new interprctation of the stabilizing effect of the 8-term on the long waves. 
Thc relevant observation is that  although in thc long-wave region the momentum convergencc has a large amplitude, 
its time frequency is also largc, so that  no significant energy conversion can be performed. 

1. INTRODUCTION 

One of the most important properties of spectral forms 
of the dynamical equations is that severely truncated 
versions of the equations possess the same quadratic 
invariants as the full set of equations. This fact lends 
support to the idea, proposed by Lorenz [5], that the 
dynamical equations may be stripped of a large amount 
of detail without sacrificing their essential physical 
content. Thus, the truncated equations, or “low-order” 
system, may be used to represent the nonlinear effects 
inherent in the full dynamical equations in a very simple 
manner. 

This technique has been applied by many authors 
(Platzman and Baer [SI, Wiin-Nielsen [lo], Bryan [l], 
Eliasen [ 2 ] )  to describe the exchange of energy between 
the eddies and the zonal flow. These authors have also 
developed and illustrated the concept of available kinetic 
energy, which depends on the conservation of the total 
momentum of the flow. 

There is one aspect of this problem that has not received 
any attention in the literature; and that is the physical 
interpretation of barotropic instability in the “low-order” 
system. Bryan [I] recognized the importance of the dif- 
ferential efl’ect of the p-term in determining the charac- 
teristics of the barotropic energy exchange, but did not 
explicitly connect it with barotropic instability. 

The purpose of this paper is to provide this connection 
between barotropic instability and the differential effect 
of the p-term; and for this purpose three models of baro- 
tropic flow will be studied in a comparative way. 

The first model was presented by Lorenz [5], and 
considers barotropic motion on a f a t  earth where the 
Coriolis parameter is constant (the “$plane”) the second 
is the extension of Lorenz’s model to the “6-plane”; 
the third is an equivalent three-component system in 
spherical harmonics which accounts for the sphericity 
of the earth. Because of the geometry of the first two 
models, the relevant functions to be used in the spectral 
representation of the dynamical equations are trigono- 
metric functions of x,  y, where x is distance measured 

in an east-west direction, y is distance measured in a 
north-sou th  direction. 

I. MODEL I-MOTION ON THE “f-PLANE” 

The equation governing the first model is 

(1) 
b 
- at (V’#)+k X vJ.*V(V’#)=O, 

where J. is a stream function and k is the vertical unit 
vector. Lorenz shows that by considering flows which are 
doubly periodic in x and y equation (1) may be trans- 
formed into spectral form in terms of trigonometric 
functions of the form ef(mkzfnlu) where m, n, are integers; 
and L , = 2 ~ l k ,  L , = 2 ~ / l  define the fundamental region. 
Further, by truncating the representation he shows that 
the minimum system capable of reproducing the nonlinear 
effect of the advection term in (1) is given b y  the following 
equations : 

v2$=A cos l y f F  cos k x f 2 G s i n  lysin kx, 

2G sin lysin kx. ( 2 )  

Then the harmonic tendency equations obtained by sub- 
stituting (2) in (1) are 

d A  
d t  - a(a2+l) 

A F 
12 COS 1 y - 7  COS kx--  #= -- 

k k2+ 1’ 

FG, 
1 ._ - -~ 

AF, (3) 
dG a’-1 
d t  - 2a 
-- -- 

where a = k / l .  

energy. and square vorticity are given by 
The expressions for the horizontally averaged kinetic 

They are both conserved under this truncation as may be 
verified by using equa,tions (3). 

The differential equations (3) can be solved analytically 
and the solution can be expressed in terms of elliptic 
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FIGURE 1.-The amplitudes of Model 1 as a function of time for  a 
linearly stable case (top) and a linearly unstable case (bottom). 
The ciirvc labelled V L  is the time variation of the u coniponent 
according to the linear analysis. 

functions. They may also be solved by simple numerical 
integration; and i t  is perhaps someivhat easier to do so, 
especially if we wish to change parameters and initial 
conditions to obtain a variety of solutions. 

A ,  in the equations (2) t,hrough (4), represents a zonal 
flou- \\-itti a sinusoidal profile, F and G being waves super- 
imposed on the zonal flou-. Let 11s then consider a basic 
zonal fiow il=x and perturbations F= F', G=G'. Then, 
linearizing equations ( 3 ) ,  i.e. neglecting products of per- 
turbation quantities, me have 

d2F' a2(a2-- 1) - 
( E t 2  -- 2(a2+1)  A2F ' ,  

with a similar expression for G'. The above equation is of 
the form d 2 x / d t 2 =  k x ,  and solutions to this equation are 
exponential if k>O and sinusoidal if k<O. Thus for 
stable oscillations a2- l>0  or since a 2 0 ,  a>l; for 
unstable oscillations a2-1<0 or a<1. At this point 
most analyses of the dynamical equations stop. In this 
system one is not so limited. One may, in fact, study the 
nonlinear behavior of the system in conjunction with a t  
n-orst a simpIe numerical integration with respect to time. 

TI) figure 1 \\-e present the results of two numerical 
integrations of equations (3). Time is measured in units 
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FIGURE 2.-The amplitudes of Model 1 as a function of time for a 
linearly stable case where perturbation conditions no longer 
apply. 

of 3 hr., so that if A=l, the vorticity of the zonal flow 
is of the order of f i n  middle latitudes. The time step used 
was 2 units or 6 hr. The initial conditions were chosen 
to be perturbation conditions, that is, so that the linearized 
equations mould be valid initially. The curves are labelled 
U, v, a v  according to the wind components they imply, Le., 
U=A, v=F, UV=G. 

I n  the linearly stable case the perturbations oscillate 
sinusoidally and their amplitudes remain very small. (They 
do cause slight fluctuations in the zonal component as is 
necessary for any non-zero perturbation.) The periods of 
fluctuation are in good agreement with the results of the 
linear analysis. I n  the linearly unstable case the perturba- 
tions initially grow exponentially, taking energy from the 
zonal current. The growth does not proceed without limit 
but is slowed down as the zonal flow becomes weaker, 
finally ceasing altogether when the zonal flow becomes 
zero. The perturbations then decay and feed energy back 
into the zonal flow which now changes sign. The process 
of growth and decay then repeats itself. 

I n  the linearly stable case A remained practically con- 
stant. This is because the perturbations F and G were 
small initially and always remained small. If, however, 
one starts an integration where F and G are no longer 
small relative to A we have the possibility of causing 
large fluctuations in A.  I n  figure 2 we present the results 
of numerical integration of equations ( 3 )  for a linearly 
stable case where perturbation conditions no longer apply. 

I n  the first case the initial perturbations are not strong 
enough to take all the energy from the zonal f l o ~ ,  but do 
cause n large fluctuation. I n  the second, the initial pertur- 
bations have been increased slightly, and the zonal flow 
is completely depleted and then reversed in a similar 
manner to the linearly unstable case. 



34 MONTHLY WEATHER REVIEW Vol. 96, No. 1 

The above constitutes a minimum system of equations, 
as devised by Lorenz [5], capable of representing nonlinear 
barotropic motion. Stability and instability here appear 
to involve the same process, and the particular motion and 
development of a perturbation, stable or unstable in a 
linear sense, is governed by its nonlinear interaction with 
the basic flow. The only difference between stability and 
instability is the amplitude of the fluctuations of the 
various modes of motion. That this amplitude of fluctua- 
tion depends on the relative magnitudes of the perturba- 
tions and zonal flow illustrates what may be called insta- 
bility depending on the size of the perturbation. 

3. MODEL 2-MOTION ON THE “/%PLANE” 
The extension of the Lorenz model to the “p-plane” is 

quite straightforward. The governing equation for this 
system is 

(6) 
a a* 

(V’J.) + k X V+ . v (v’$) + p ; 

and the simplest possible truncation of the system is 

v2+=A cos ly+Fl cos kx+Fz sin kx 

+ ( G I  cos kx+Gz sin kx) sin ly, 

Fi FZ cos l y - -  cos kx-- sin kx A 
k k2 

$=-- 
1 2  

sin ly 
k2$ 1” -(GI COS kx+ GZ sin kx) - ( 7 )  

where k ,  1 have the same meaning ns in the previous model. 
Because of the free phase propagation generated by the 
Rossby term 0 d+/dx both the amplitude and phase of 
each wave must be included. 

The harmonic tendency equtitions resulting from the 
substitution of the representation (7) into (6) have the 
following form : 

I,( FG*) , d A 1 _- 
clt -2a(l+a’)  

where a=k/L, P=Fl+iFz, G=Gl+iGz. 
For reference, A can be identified with the previous A, 

F, with F, G2 with 2G. If p=O then F2 and G,, being 
zero initially, u-odd :Ll\vays remain so. Again A may be 
identified ivith a zorial flow m d  F,, F2, 4 ,  G2 with per- 
turbations on this basic current. 

The first step in the discussion of this system will be 
i i  linear annlysis of the equations (8). As before A=A, 
which is large compared to the perturbations F;, &’ 
G;, G;. Neglecting products of perturbations equations 
(S) become 

- 

y =  0 

FIGURE 3.-The profile of the zonal current for Model 2. 

where F‘ = Fl’ +i F2’, G‘= GIf +i G2’. 

(9) yield the following frequency equation 
If we assume perturbations of the form eiul, equations 

Thus if a is greater than one, the waves are stable; if a 
is less than one the necessary and sufficient condition for 
stabilitv is 

Y 

- ( P / 0 2  . 
A2‘2a4(1-a4) 

This stability condition is quadratic in a4, so that for 
given values of the zonal flow there 157ill be upper and lower 
wavelength bonds on the unstable modes. 

From equation ( 1 1 )  we find that a11 wavelengths will 
be stable if z 2 < 2  p Z / l 2 ,  whereas if we consider the known 
sufficient condition for stability, namely that the gradient 
of absolute vorticity is of one sign throughout the fluid 
me findB2</32/12. This is reasonable agreement in view of 
the severe restrictions we have imposed on the flow. 

The roots of the frequency equation (10) were computed 
with the zonal current modelled as illustrated in 3, where 
the amplitude remains variable. Thus, L y =  na/3, so that 
1=6/a; where a is the radius of earth. Time is measured 
in units of approximately 18 hours, so that f = 6  and 
p=f/a=6/a. These parameters were also used in the 
numerical integration to be described later. 

Figure 4 shows the real and imaginary parts of the 
frequency as a function of a for various amplitudes of the 
basic zonal flow. The linear analysis of this system as 
presented in figure 4 indicates the following general 
features: 

a) Very long waves a=Ly/Lx<<l are stabilized by the 
inclusion of the Rossby term. The two phase speeds are 
very widely different, being determined primarily by the P 
effect, as may be seen by considering equation (10) when 
a<<]. 

b) Short waves a = L y / L x > l  are stable as before, and 
their phase speeds are determined primarily by the zonal 
current . 
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FIGURE 4.-The real part and positive imaginary part of the fre- 
quency as a function of the ratio of fundamental wavelengths for 
different values of the zonal wind amplitude (Model 2 ) .  

c) Intermediate wavelengths may be unstable if the 
zonal current is strong enough. 

This picture is consistent with the barotropic analysis 
of I iuo [4], although instability is more difficult to achieve 
in the sense that greater zonal wind shear is required. 
These results are also similar to those obtained by Wiin- 
Nielsen [IO] in the sense that the @-term tends to stabilize 
the longer wavelengths and that intermediate tvave- 
lengths may be unstable if the zonal flow is strong enough. 
The system of equations (8) may be shown to have 
solutions which are elliptic functions of time (Platzman 
[7]) , but again by simple numerical integration we may 
study the nonlinear properties of the model. 

In  the following three cases the initial conditions are 
the same and correspond to perturbation conditions, 
specifically A = - 6 ,  E;=F2=G1=Gz=0.1 a t  t = O .  The 
mean square vorticity of each component (which in this 
system is proportional to the kinetic energy) as well as 
the phase angle of the two waves plotted as functions of 
time in figure 5. Again, A is referred to as “U,” F,, F2 as 
the function “v” wave, and GI, Gz as the “uv” wave. 

CASE 1. a=1.5  (LINEARLY STABLE) 
The two waves interchange energy and the zonal current 

undergoes only very slight changes (0.001 percent and 
thus is not plotted). The average angular phase speeds 
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FIGURE 5.-The mean square vorticity and phase angle of the  com- 
ponents of Model 2 as a function of time for a short wave stable 
case (upper), n long wave stable case (lower), and an unstable case 
(center). The time step is approximately 1 hour. ‘‘ 

of the waves correspond very closely to the results of the 
linear analysis. The two waves do vary their relative 
positions periodically but with small amplitude. 

CASE II. a=0.7 (LINEARLY UNSTABLE) 

In this case the waves are linearly unstable and start 
to grow at once, extracting energy from the zonal current. 
Soon all of the energy is removed from the zonal current 
which changessign for a short period, and the perturbations 
have reached their maximum intensity. The perturbations 
then decay, feeding their energy back to the zonal current 
which climbs back to its original value. The “uv” wave 
lags the “v” wave when the zonal current is decreasing 
westerly and shifts to be leading when the zonal current 
is increasing westerly. 

CASE 111. a=0.3 (LINEARLY STABLE) 

The zonal current undergoes a weak sinusoidal fluctua- 
tion of about 10 percent of its amplitude. The perturbations 
oscillate sinusoidally as well, both being out of phase 
with the zonal current. The phase progression of the waves 
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FIGURE 6.-Thc mcan square vorticity and phase angles of the 
components of Modcl 2 as n function of time; where pcrturbation 
conditions do not apply. The upper diagram is for a short mnvc 
case, the  lowcr, a long wavc case; both cascs are linearly stable. 
The time step is again approximately 1 hour. 

is quite different from Case I. Here the waves are retro- 
gressing and have phase variations which are similar to 
Case 11. However, because the average phase speeds of 
the two waves are widely different, the amount of time 
spent in one phase configuration is small. 

As in Model 1 discussed previously we can cause 
large fluctuations in a stable zonal current merely by 
having large enough perturbations initially. Figure 6 
illustrates this for both long wave and short wave cases. 

The question now is what physical significance or 
conclusions can be drawn from this simple nonlinear 
system? Firstly, the nonlinear process in operation here 
is horizontal momentum transport and convergence. The 
covariance of the convergence of momentum trap sport 
and the zonal wind is, of course, the measure of the 
energy conversion from eddy kinetic energy to zonal 
kinetic energy. The horizontal momentum transport in 
this system is given by 

1 Lz 1 1  
- (F2Gi-FIG2) COS l y .  2a(l+a2) 1 2  

M T = z  1 ulvldx=- 

(12) 
The connection with the rate of change of zonal kinetic 
energy is apparent because 

Now if we let 

then (12) becomes 

1 1  
- FUGU, sin (C$~-I$~,) cos ly.  (13) 2 a ( l + d )  l 2  MT=- 

Thus, south of the wind maximum we have southward 
transport of westerly momentum if 4 u > ~ u o .  Because of the 
simplicity of the system the momentum convergence has 
the same profile as the zonal current so that no splitting 
or north-south motion of the wind maximum can be 
produced. The important thing to note is that the momen- 
tum transport depends on the difference in phase of the 
“v” and “uv” waves. From this consideration the following 
physical picture presents itself. The two waves (“v,” “uv”) 
are moving in an east-west direction. Even if they are in 
phase a t  one particular time, because of their different 
scales (resulting in different Rossby phase speeds), they 
become out of phase a t  a later time; and transport and 
converge momentum changing the zonal current. This 
change in the zonal current produces a change in the 
phase speeds of the two waves and an oscillation has been 
started. The details of the motion then depend on how 
much of an effect the perturbations have on the zonal 
current. If they have little effect then the oscillation is 
weak and we may consider the system as stable and if 
they have a large effect we may consider the system as 
unstable. The effect must be on the zonal current, and it 
is not sufficient just to have large momentum transports. 
I n  fact, this is the reason why the inclusion of the Rossby 
term stabilizes the long waves. Because of the large 
difference in Rossby phase speeds of the “v” and “ I W ”  

waves, and although for this scale of motion the momen- 
tum transport is large, no significant energy conversion 
takes place because there is not enough time. In  other 
words, although the amplitude of the momentum trans- 
port is large, its time frequency is also large; so that i t  
changes direction before it performs a significant energy 
conversion. 

4. MODEL 3-MOTION ON A SPHERICAL SURFACE 
The starting point for this model is the m n e  :LS for 

Model 2 ,  i.e., the barotropic vorticity equation, but with- 
out the “B-plane” approximation. This model does have 
an added complexity since for particultir components 
representing the zonal flow it is possible to have ii zonal 
wind which is non-zero when averaged in :L north-sollth 
direction. 

The spectral equation describing barotropic flow in 
terms of spherical harmonics has been given by Platzmari 
[7] and may be expressed as 

where 
$=a2 $,Y,; Y y = P y e i m y X ;  Cy=n,(n,+I). 

I n  this equation Hays is the interaction matrix and is 
given by 

Y 

if mafmg=my, Hay5=0; 
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otherwise, where P,= P&! is the normalized Legendre 
function of the first kind. 

The simplest truncation which produces nonlinear 
exchange is a three component one. Thus, one component 
represents the zonal flow, $J:, and the other two represent 
perturbation of longitudinal wave number m ;  $J," and 

where s#k. This corresponds to Platzman's class L3 
(Platzman [ 7 ] ) .  So that in (14) a, 0, can take on the set 
of values (0, n), ( i m ,  k), ( k m ,  s). 

Performing the indicated summation and using the 
symmetry and redundancy properties of the H's (Silber- 
man [9], Platzman [ 7 ] ) ,  the spectral equations take the 
form 

The horizontal mean of kinetic energy in this system is 

a2 
4 =- (Et+EF+EF); 

while the mean square vorticity is given by 
- 
v",3(C~~~2+2C2,+7++~m+2c~*?*~m), 

,+(v;o+p+,m). 

Using the tendency equations (15) the en rgy and 
vorticity exchange in this system is described by 

- 
- -(C,-C,)Q, -- 
dE7 

'm-- Cs( Ck- C,) Q ,  ( 1 8) cl t dt 

where 

Q=zWd+E"IL.:"-+Em+3 mt . 
This is an expression of the Fjflrtoft blocliing theorem 
(Fjfirtoft [5 ] )  ; and i t  can be seen that 

-0. d E  - d p  
clt--cEt- 

Linearizing the equations and considering time varia- 
the following frequency equation tions of the form 

is obtained: 

where 

Thus the necessary and sufficient condition for sttLbi1it-y 
is that 

( 2 0 )  
1 
4 6,682 -- (Ys-Yk)2, 

and the phase speeds are given by 

The above result is identical to that obtained by Platz- 
man [7]. 

The physical meaning of the parameters are the fol- 
lowing: -ys, -y, are the Rossby phase speeds (or con- 
vective phase speeds), 6,, & are nonlinear phase speeds 
(depending on momentum transport). Now, 6,6, is 
given by 

lJ02 t 2  
"CsC, 6 6 - ,-- (C,-C,)(Cn-Cs) ( 2 2 )  

and from (20) if 6,6,>0 then waves are stable. Thus i t  
follows that unless the zonal wave scale is intermediate 
to the other two, and t # O ,  the waves are stable. Since 
the equations are symmetric in s, k let s>k. Then waves 
are stable unless 

k<n<s and t # 0 .  

Now, .$+O only if s+k+n=odd and Is-nlk<s+*n 
(Silberman [9]). So that the number of possible unstable 
modes is quite restricted. The combinations of (8, k) 
which can be unstable for a given zonal component are 
given in table 1. 

As indicated previously this model has the added f eaturc 
that a purely convective phase speed (one that does not 
require energy exchange) involving the zonal component is 
possible. This is measured by the parameters a,  and ak. It 
is instructive therefore to compare the case where a, = aL 
= 0 with the stability criterion of Model 2. Since 

TABLE 1.-Possible unstable modes j o r  a given zonal component 
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FIGURE 7.-The kinetic energy (relative units) and phase angles of 
the components of Model 3 as  a function of time. The upper figure 
is for a n  initial value of the  zonal component which is unstable; 
the lower for a stable initial value. 

it follows that P: must be an even function of latitude, 
i.e., n=even; which corresponds to  an odd zonal wind 
field. Assuming that k<n<s  and t # O  the condition for 
instability is then 

(23) 

where ys=2L?2/Cs, y k = 2 f i 2 / C k ,  i.e. the Rossby phase speeds 
for a zero zonal wind. Now, the wavelengths of the com- 
ponents are defined as L:=a2/Cn, etc.,where a is the radius 
of the earth so that (23) becomes 

It may be shown that the stability criterion in Model 2 
can be writ ten as 

where yo, yuo are the Rossby speeds, and L,, L,, L,, are the 
wavelengths of the components. Thus Model 2 and this 
case of Model 3 are physically equivalent. Model 2 could 
b e  made completely physically equivalent to Model 3 if a 
constant zonal wind was added to the sinusoidal profile 
since the p-plane approximation was employed. 

As far as the application of the results of the stability 
analysis is concerned it has been shown by Merilees [6] in 
an analysis of the stream field a t  500 mb. for September 
1957 that  no component ever had an amplitude during the 
month which was unstable with respect to perturbations of 
this kind. This would suggest that  if motion of this type 

mere to  be observed it would be of the stable type (which 
may, of course, involve large fluctuations of the zonal com- 
ponent if the perturbations are large enough). 

The integrations of equation (15) (because of their 
similarity to equation (8)) produce essentially the same 
results as Model 2. In  figure 7 we show the results of two 
cases of numerical integration of equation (15). In  the 
first case (upper) the initial value of $: is in the unstable 
regime, the other (lower) is for a stable initial value of 
$:. In  both cases the initial values of the perturbations 
were one hundredth of the initial values of $:, Thus the 
same interpretation of the stability criterion and thenumer- 
ical integrations in terms of horizontal momentum trans- 
port and convergence as was formulated in Model 2 ,  apply 
to Model 3. 

5. SUMMARY AND COMMENTS 
Three simple models of barotropic flow have been 

studied by use of the spectral method. The results of these 
studies are consistent with previous linear analyses of 
baro tropic flow but also provide a physical interpretation 
of barotropic instability in terms of the frequency of 
momentum transport and convergence. It may well be 
argued that the severe truncation of the representation in 
these models limits their applicability in detail to atmos- 
pheric flow. However, the mechanism of energy exchange 
(i.e. momentum convergence) will be the same no matter 
how complete or incomplete the representation. So, if u7e 
limit ourselves to understanding this exchange process 
then we are most probably on safe ground. 
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